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ABSTRACT

The time-averaged intensity density function of the acoustic

radiation from rotating blades is derived by replacing blades with

rotating dipoles. This derivation is done under the following turbu-

lent inflow conditions: turbulent ingestion with no inlet strut

wakes, inflow turbulence elongation and contraction with no inlet

strut wakes, and inlet strut wakes.

Dimensional analysis reveals two non-dimensional parameters

which play important roles in generating the blade-passing frequency

tone and its multiples. The elongation and contraction of inflow

turbulence has a strong effect on the generation of the blade-passing

frequency tone and its multiples. Increasing the number of rotor

blades widens the peak at the blade-passing frequency and its multi-

ples. Increasing the rotational speed widens the peak under the

condition that the non-dimensional parameter involving the rotational

speed is fixed. The number of struts and blades should be chosen so

that (the least common multiple of them) -(rotational speed) is in the

cutoff range of Sears' function, in order to minimize the effect of

the mean flow deficit on the tire averaged intensity density function.-

The acoustic intensity density function is not necessarily stationary

even if the inflow turbulence is homogeneous and isotropic. The time

variation of the propagation path due to the rotation should be-con-

sidered in the ccmputation of the intensity density function;
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for instance, in the present rotor specification, the rotor radius is

about 0.3 m and the rotational speed Mach number is about 0.2.
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CHAPTER I

INTRODUCTION

1.1. Statement of the ?roblem

This study attempts to derive the time averaged far field

acoustic intensity spectral density function due to the acoustic

radiation from (1) low rotational speed rotors operating in frozen,

homogeneous, and isotropic turbulence, and (2) low rotational speed

rotors behind inlet struts, where the rotor is assumed to be acousti-

cally compact. For the present analysis, the dipole source due to

blade/turbulence interaction, as computed by Sears' function, is

assumed to be predominant over other radiation sources. k rotating

dipole model is pursued so that the effect of the dipole rotation can

be accounted for explicitly in the analysis. Sears' function is

regarded as an impulse respolse function of a blade, so that the

analysis is done in a time domain and in a frequency domain. There

is no blade-to-blade interaction to be included, such as that devel-

oped by Kemp, et al. [1]. It is assumed that the inlet struts do not

affect the sound propagation and that the distance from the rotor to

the duct inleL or exit is much shorter than the sound wavelength so

that duct effects on propagation are negligible.

1.2. Previous Investioations of Rotor Noise

Rigorous treatments of the effect of a solid boundary under the

influence of a volume distribution of quadrupoles, as in the Lighthill



acoustic analogy approach [2], were done by Curie [3] and Doak [4]

for a stationary boundary, and by Ffowcs Williams, et al. [5] for a

non-stationary boundary and a rigid surface boundary of a moving bod'.y

such as that of a rotating blade with a low aspect ratio. Curie

derived the sound field as the sum ot that ;enerated by a volume

distribution of quadrupoles and by a surface distribution of dipoles

due to the diffracted wave from the quadrupole and due to the hydro/

aerodynamic flow itself; but the distribution of the dipole, such as

the tangential component of the dipole on the surface, is difficult

to measure. Doak obtained the sound field for the same situation as

did Curie, but the former's result concerning the contribution from

the surface dipole is based on an easily measurable quantity. Ffowcs

Williams, et al. obtained the sound field as the sum of that generated

by (1) the quadrupole in a volume distribution, (2) the dipole in a

surface distribution, and (3) the monopole in a surface distribution

where the monopole is due to the volume displaced by a non-stationary

boundary. He found also that in case (3) as for the case of the rigid

surface boundary of the moving body, the monopole is broken into

another quadrupole and dipole.

In the Lighthill acoustic analogy approach [2], the acoustic

radiation source region is assumed to be substantially small, because

the observer of the radiation is far from the source region, so that

the propagation and source terms are separable and the non-linear

effect is regarded as the source term in the acoustic wave equation.

In other words, the source distribution does not affect the acoustic

propagation or, more oreciselv, the rezion where the acoustic field

is to be computed does not overlap with the source region, so that no
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convection effects are involved in the acoustic wave propagation.

Thus, if the linear acoustic process is isentropic, then the acoustic

intensity is computed based on the acoustic pressure.

In the Lighthill acoustic analogy approach, the existence of a

rigid body yields dipole and quadrupole terms in the acoustic wave

equation. However, their relative importance is dependent on the

rotor speed, the dimensional parameters of the rotor, and the fre-

quency range of interest. In practice, there are situations where the

dipole source dominates the acoustic radiation over that due to the

quadrupole source. Ffowcs Williams, et al. [5] and Goldstein [6]

showed the relative importance of the dipole source over the quadru-

pole source for a low speed rotor with a small number of blades, under

the assumption That the dipole and quadrupole sources have similar

spatial and temporal scales.

The assumption of acoustically compact blades permits replacing

distributed dipole sources with a single point dipole whose strength

equals the total strength of the distributed dipoles on the blade.

Thus, each blade is replaced with a point dipole or multiples of a

dipole. Lowson [7] derived the far field and near field acoustic

pressure from a moving singular dipole source by using Lighthill's

acoustic analogy approach, where the importance of the acceleration of

the moving dipole was accounted for in the expression of acoustic

pressure.

As there are two interpretations of the solution of the acoustic

wave equation of cylindrical coordinates, i.e., a rotating pressure

pattern using an exponential function for the angular variation of the

pressure pattern, or a modal pressure pattern fluctuating in time
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using a trigonometric function for the angular variation of the

pressure pattern, the acoustically compact rotating blades can then

be modeled by on-off dipoles or rotating dipoles. Homicz [8], Gutin

(9], Wright [10, 11], and others pursued the on-off dipole model.

Ffowcs Williams, et al. [12], Lowson, et al. [13], Morfey, et al. [14],

Mani [151, and others employed the rotating dipole model.

The rotating dipole model accounts, on the one hand, for the

fact that the distance betwecn the observer and the rotating dipole

varies according to the rotation of the dipole, and that the direction

of the motion of the dipole varies. On the other hand, the on-off

model does not account for it because the distance between the on-off

dipole and the observer is fixed all the time.

There are two ways to get the dipole strength necessary to

compute the acoustic radiation from rotating blades: analytically and

empirically. For instance, Hanson [16] derived the far field acoustic

pressure for a compact subsonic rotor based on rotating dipoles whose

strength was derived from the pressure measured by a pressure sensi-

tive transducer mounted at a specific point on the blade surface, even

though the position of the transducer has a significant influence on

the acoustic pressure at the observer's point. In addition, the size

of the pressure transducer, i.e., the area of the transducer, influ-

ences the measured data especially at high frequencies. Homicz [8],

Amiet [17], Aravamudan, et al. [13], Mani '!9], Sevik (20], and other

utilized a two-dimensional aero/hydrodynamic function developed by

Sears [21] in order to obtain the dipole strength.

The two-dimensional aero'hvdrcdvnamic function was developed for

a two-dimensional thin airfoil having small camber under the following
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assumptions: (1) the flow from the upper and lower surfaces of the

blade at the trailing edge has no pressure jump, (2) a thin sheet of

vorticity is shed from the sharp trailing edge (Kutta condition),

(3) the thin sheet is shed along the chord line of the blade, (4) the

finite thickness of the boundary layer at the trailing edge is not

important, (5) no viscosity is involved although the vorticity is

generated by viscous action in the airfoil boundary layer, (6) gusts

to the airfoil are frozen (the frozen gust assumption implies that

gusts are not distorted during the time of passage over the airfoil),

and (7) the airfoil is acoustically: comDact.

Among the aforementioned assumptions, the Kutta, frozen gust,

and compactness conditions require special care when using the two-

dimensional aero/hydrodynamic function for the following reasons:

although the Kutta condition has a dramatic effect on the pressure

distribution on the blade surface, as shown by Kelly [22], the condi-

tion is still being investigated [23]. The frozen gust condition

implies that the two-dimensional aero/hydrodynamic function is rela-

tively valid for low values of the frequency compared with higher

values. The assumption about compactness asserts that the acoustic

radiation at one surface point does not affect the surface pressure

at others. Thus, at high frequencies, it is meaningless to integrate

the surface pressure in order to get the strength of a point dipole.

Jackson, et al. [241 compared the measured and calculated aero-

dynamic admittances which are associated with aero/h.drodvnamic

functions such as are given by Sears' tto-iimensional theory, by two-

dimensional strip theory, and by three-dimensional theory. The two-

dimensional strip theory states that the lift of each chordwise wing
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element is a function only of the local upwash fluctuations at the

element, and that the lift on each strip, i.e., each element, is

obtained by using Sears' two-dimensional theory. Results show that

the three-dimensional theory such as that of Filotas [25] or Graham

[26] gave good agreement with measurements. The two-dimensional strip

theory gave gairly good agreement. Sears' two-dimensional theory

overestimated for the entire reduced frequency range.

Amiet [27] showed that the two-dimensional strip theory is a

good approximation for computing the far field acoustical pressure due

to unsteady lift if Hk d is large, where M, k and d are a streamwise
x X,

Mach number, a chordwise turbulence wave number, and a span length,

respectively. The most important development in his argument is that

the computed lift agrees quite well with the measured lift even when

Mk d = 1. He showed that the acoustic radiation produced by thex

parallel gusts would be the most dominant noise source.

The two-dimensional aero/hydrodynamic function causes aliasing

among different wave number gusts. This is because the two-

dimensional aero/hydrodynamic function, such as Sears' function,

utilized a wave number in the direction of the chord line of a thin

airfoil. Therefore, even if the frozen gust is decomposed into its

wave number components, each component cannot be the same among

rotating blades, because the direction of the chord line of each

blade is different from each other.

It should be noted that, since the two-dimensional aero/

hydrodynamic function, such as Sears' function, involves one reduced

frequency relating the wave number of the upwash to an airfoil to a

frequency, then the interaction between blades and the flow
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fluctuation can be treated in a time domain and in a frequency domain

instead of a space domain and a wave number domain.

For the analysis of the acoustic radiation from rotating blades,

there are three possible flow types: (1) steady uniform, (2) steady

non-uniform, and (3) unsteady. Gutin [9] investigated the acoustic

radiation from rotating blades under a steady uniform flow, i.e., a

constant lift force. Morse, et al. [23], Lowson, et al. [13], and

Wright [10, 11] tried to explain the discrepancy between Gutin's

computed results and experiments, especially in the higher order

harmonics of the blade-.oassing frequency, by introducing a steady non-

uniform flow. As quoted by Lowson [29], Leverton [30] reported that

no blade-passing frequency and its harmonics appeared in the spectrum

of the acoustic radiation from a rotor under calm wind conditions.

However, a slight change in conditions caused a blade-passing fre-

quency and its harmonics. In a steady uniform and a steady non-

uniform flow, the phase difference of the loading on different blades

can be expressed deterministically by the geometrical angle position

difference among blades. This is not the case for an unsteady flow.

Homicz [81 took the on-off dipole model as the representation of

rotating blades operating in an unsteady flow of convected frozen

turbulence by replacing a blade with a dipole at a representative

radial position. Sears' function was used to compute the lift on a

blade, where a reduced frequency averaged over one blade revolution

was used in order to get around the aforementioned aliasing phenom-

enon. He showed that the total power of the acoustic radiation from

rotating blades operating in homogeneous and frozen turbulence is

proportional to w-U7 where w and U are a mean square turbulence
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velocity and a convection velocity of the turbulence, respectively.

He showed further that the blade-passing frequency and its multiples

occur in the frequency spectrum of the acoustic radiation when U/(%2)

is very small where U, SI, and .A are an axial flow velocity, a rota-

tional speed, and a typical length scale of the turbulence, respec-

tively. The smallness of U/(A2) implies that a partially coherent

turbulence is chopped by many blades so that blade-passing frequency

and its multiples appear in the frequency spectrum signature.

Mani [15] investigated the noise due to the interaction of inlet

turbulence with isolated stators and rotors. He assumed that the

amplitude strength for each rotating dipole is equal and did not

consider the phase relation of the strength of dipoles, which should

occur for turbulence interaction. The blade-passing frequency and its

multiples in the frequency domain were assumed due to the aerodynamic

interference between moving blade rows as investigated by Kemp, et al.

[1]. He showed that the sound power level increases with decreasing

L/D where the turbulence is assumed to be homogeneous, isotropic, and

stationary, and can be characterized by a longitudinal correlation

function such as exp(-r/L) where L is the length scale of the turbu-

lence, and D is a transverse spacing between blades. He also showed

that the acoustic spectra for rotors are peaked at the blade-passing

frequency and its multiples when L/D exceeds about 0.5, and that when

L/D < 0.5 the spectra start broadening noticeably. However, the

parameter L/D does not take into consideration the contribution of the

rotational speed of the rotor and the axial flow velocity. That is,

even if L were small, a higher rotational speed and lower axial flow

velocity would create the same situation as when the length scale of
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turbulence is large, together with a high axial flow velocity and

lower rotational speed.

Sevik [31] derived the sound power spectrum frcm a rotor operat-

ing in turbulence. The noise source is the axial component of the

blade lift only. The sound power is computed based on the general

relation S () = E(XCj)I2 where S ( ) is the power spectrum of a
x x

stochastic process x(t) satisfying j aR (a)da < -, where R (1) is

the correlation function of x(t) which is assumed to be a wide-sense

stationary process, and the correlation function does not account for

the rotation of the blade. The assumption of the correlation function

regards the rotor as being stationary. Because of the use of only the

axial component of the lift, the result applies only near the center-

line axis of the rotor. In Sevik's calculation of the lift of a

blade, the blade is replaced by a line dipole source and the idea of

a typical section is introduced, whereby the resultant velocity and

chord of the various elements (or infinitesimal strips) may be

represented by those of a single "typical section" located at some

fraction of the span of a blade. Unfortunately, the resulting power

spectrum does not predict the blade-passing frequency component and

its multiples, due to the assumption of the correlation function of

the upwash at the blades, although, as shown by Robbins, et al. [32],

the level and general shape of the predicted spectra agree with the

experimental data.

1.3. Scone of Investization

In Chapter II, an acoustic radiation formula is obtained from

the inhomogeneous acoustic wave equation with rotating dipole sources.
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This leads to the integral equation, with Green's function, of the

acoustic wave equation in an infinite medium. The acoustic compact-

ness condition is introduced, so that the blade can be replaced by a

point dipole. The time-averaged acoustic intensity spectral density

function is developed in a general form where the effect of the

rotation of the dipole is shown explicitly.

In Chapter III, the impulse response function of a blade based

on two-dimensional, unsteady, thin airfoil theory is discussed so that

the blade response to turbulence can be treated in a time and fre-

quency domain. In addition, the correlation functions of the lift on

blades and the lift derivative with respect to time are obtained.

In Chapter IV, the power spectrum of the upwash to the blades is

obtained in the following cases: (1) the inflow turbulence is homo-

geneous, isotropic, and frozen, (2) the turbulence in (i) is elongated

and contracted on its course to the rotor plane, and (3) there are

wakes due to inlet struts in addition to the inflow turbulence. The

results of Lane (33] are utilized in the derivation.

In Chapter V, the results in Chapter II, III, and IV are

combined in order to obtain the time-averaged acoustic intensity

spectrum. The condition for neglecting the retarded time difference

among the lift of blades is introduced. Furthermore, important non-

dimensional parameters are introduced so that the effect of the

various turbulence properties and :he rotor geometry and operating

condition can be determtined.

In Chapter VI, computations are done according to the results in

Chapter V such as EQ. (5.16) and Eq. (5.22) by changing the number of

struts and rotors, the spacing between struts and a rotor, the

'IK
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observation angle, and non-dimensional parameters such as U 3 2 and' 3 **i*

R.r/. i .. In particular, the variation of these non-dimensional param-

eters are made around an axial flow velocity of U = 30 m/sec, a rotor
3

radius of R, = 0.30 m, a rotor rotational speed of 2 = 220 rad/sec,

an inflow turbulence length scale of A. = 0.15 m and 0.017 m, and a
1

wake turbulence length scale .'. = 0.0063 n.
w



CHAPTER II

ACOUSTIC RADIATION FROM ROTATING DIPOLE SOURCES

2.1. Introduction

There are two tasks necessary for analyzing the acoustic radi-

ation from rotating blades: (I) obtaining the lift on the blades due

to the interaction between the rotating blades and turbulence in a

flow, and (2) obtaining the radiated sound from the lift. In this

chapter, the acoustic radiation due to lift on the blades is consid-

ered, based on the Lighthill acoustic analogy approach.

The analysis of the acoustic radiation from rotating blades

begins with the inhomogeneous acoustic wave equation developed by

Lighthill [2], together with the boundary condition imposed by the

blades. The implications of employing the Lighthill acoustic analogy

approach are as follows: (1) the observation point of the acoustic

radiation is far from the perturbed region so that the propagation and

source terms are separable in the governing equation for wave propa-

gation, and (2) the medium at the observation point is assumed to be

at rest. The quiescent medium and the assumption that the acoustic

process is isentropic simplify computing the acoustic intensity.

The Lighthill acoustic analogy approach leads to an integral

equation, with Green's function, for an infinite medium where the

integration is done over three spatial dimensions and one temporal

dimension. Here, the time is regarded as a parameter; i.e., the so
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called retarded time concept is employed. However, because of the

existence of the boundary surface imposed by the blades, Green's

function of -he acoustic wave equation in an infinite medium connot be

used without modifying the boundary' condition with a Heaviside

function. The modification creates new source terms such as monopole,

dipole, and quadrupole sources. However, the acoustic wave equation

modified by- the Heaviside function yields the same Green's function as

in the wave equation of an infinite medium, so that the wave equation

with boundary conditions can be solved wit'out seeking a new Green's

function.

2.2. Intezral Eouation for Acoustic Pressure

Farassat [34] showed that the surface on a moving body can be

treated as a point dipole source whose strength is equal to the total

force on the virtual radiation surface, when the following relations

are satisfied:

L L
r >>- and >> -- (2.1)
p a XM ar

where P 1 M , and L are the characteristic time scales of the
r

pressure, the Mach number of the blade rotational speed, and the

length scale of the virtual surface.

Thus, the acoustic wave equation to be solved for rotating

blades is

= -s,' , (2.2)

where
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B N-R: = .Z 6 Ar > .- ) (" .- _ (2.3)
m 1. n . Rm=1 n=! ~

Fig. I shows the configuration of the relation between the rotating

dipole and the observer's point, where soherical coordinates and

cylindrical coordinates are used for the observer's point and the

rotating dipole, respectivelv.

With the aid of the fundamental solution of Eq. (2.2), i.e.,

Green's function of the acoustic wave equation in an infinite medium,

one obtains

t ) <rr (7 f ,7-,t- dRd (2.4)aD

Vol.

where

D (r 2 + R2 - 2rR sin cos(e--;,) - rZ cos: + Z2) I / 2  (2.5)

- r - R sin cos(:-) - rZ cos: (2.6)

The integration in Eq. (2.4) is within the stationary reference frame

fixed to the center of the rotor plane. By introducing a reference

frame rotating with the speed of the rotor, i.e., 7 = 2+, one

obtains the following equation,

(r - ' (t) )iRddZd, (2.7)
4 aD

- Vol.

where

.. T + . (2.3)

Using the relation 7-.(g) = g7-. + r 7 g, where g and f are scalar and
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vector functions, respectively, one obtains,

6 (T-tD) 6 (-,- t) 5(7-t+D)
V'( a )a . + - a(29D D D

D a = D a7.-f + f- D a(2.9)

Utilizing Eq. (2.9) in Eq. (2.7), and using the fact that

- D D

Vol. Surface

because there always exists a surface where = , one obtains,

, fff . D )RdRdedZd " . (2.11)-- Vol.

Taking the gradient of 5(r-t+D/a)/D, then Eq. (2.11) becomes

,, _ D) D)1~ 0 "-_ 5 t+Da  5(7-t+DD

(r , ) = - LJ J(f." D) a a
Vol. -a 

D 2

RdrdRd~dZ , (2.12)

where the interchange between dT and RdRd IdZ is possible because the

integration is within a rotating frame,

(7oD) R = (R - r sin cos(4-'))/D , (2.13)

= (-r cos: + Z)/D , (2.14)

(7D). = -(r sin- sin('-))/D , (2.15)

and
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D a
a d D(7-t2) (2.16)

a'

Eq. (2.12) is a general expression for acoustic pressure due to

a distributed force, and it includes the pressure in the near and far

fields. In the following section, the term for the far field pressure

is extracted from Eq. (2.12).

2.3. Far Field Acoustic Pressure

Utilizing Eq. (2.3) in Eq. (2.12), and integrating with respect

to dR, dZ, and d:,

D

1 3 N n
= - -- ( 7 D n a

t n n n aD- n=l n=l ' n

D
(T-t--)

a
D 2 (2. 17)

where mn

Dmn r - Rn sin, cos(2T+ ) , (2.18)

r sine sin(C!r+ )
(7 D r) = , (2.19)
0 mn D

mn

(Dmn)Z r D cos (2.20)
mn

and

Rn - r sin cos(.i-+- '1)
(7 D)R = n D (2.21)

mn

In the above equation, 9 = 0 is assumed, because the transient

pressure is not considered here, as seen from the integration range

of T in Eq. (2.17). Now, integrating Eq. (2.17) with respect to T
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and imposing the condition for the acoustic far field, 27r

wavelength (Appendix I), then one obtains

B N R .D1 n J: mn mn ,
~' ,)-~ (2.22)

4rm= n 1D n1 3T 1D "n14 --7n a(1+1 -mn-)

a _IT a jT

Utilizing Eq. (2.13) in Eq. (2.22), one obtains

1 BARE(r,:,t) 4=a- m~ n I" n

47rTar R :
m1 n-i + -n--sin sin(2:+m)

3Z 3a ZZa_ n

mn sin., sin(2T+- - ------ coso+ Z sin-

m r n m
{c s(in:m - ---Rnsin 2si

R n sin: cos(2 "1 sin(2 > )

R
a(l + nsin sin(>-+-m))

a m
Z ' sin(._T+

+ Z R 2 cos$ sin I,-
mn n r

ICos (:7+
1 c1 , (2.23)

a(l + n sin: sin(2,+m))
a

Z Rwhere Z and Z are the 3 and Z component of 2 (r), and ZR  = 0 is
mn Mn mn n

assumed on a blade.

Furthermore, imposing the condition for the geometric far field,

r >R for all n = i, ,N, and because the time history of the
n

pressure is not considered in the ?resent study, one can neglect the

terms with R /r in Eq. (2.23), yielding

bn
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B N AR
=l Z n

n~l 4irar(I + R.n sine sin(27+ ))
a )m

mn ) mn o,
. sin: sin(2r+ m ) - f-n cos€

+ z' sine cos(T+ ) 1
mn m R2

in sin sin(2r+4 )
Rn2 a M

n sine cos(2T+2 ) (2
+ os a m (2.24)
mnR

where 1 + n sin sin(2T+ )weea m

= t - D /a.
mn

Introducing Z 3(T) = - 2mn(T) sinn and 2Z (t) = z (7) cos,
mn mn in mn mn n'

where T mnr) is assumed to be normal to the chord line of a thin

airfoil, and Z (r) is obtained by Sears' function (see Fig. 2),
in

Eq. (2.24) becomes,

i I B N nRY~ , , ) 4ar m=1 n=l ( i , i (: +

a in

- sinfl2 sin_ sin +4 )in(+m cos)) coso
Z n finsin sin(2++ m M)

cos(2r+ )
- . 72 sine sinO T

Mn mn R-
1 + n sin sin(2:+.)_

a i

+ Z 2 cos3 cos sin <
mn n

R2

a
. (2.25)

n
I 1 - sin sin(2-+, )

a 71

Eq. (2.25) is an extension of the result of Lowson [7] and
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Morfey, et al. [14] which deals with the acoustic radiation from a

moving point force. As will be shown below, this relates the acoustic

intensity spectral density function at the observation point x with

the power spectral density function of the turbulence experienced by

rotating blades calculated by an aero/hydrodynamic function.

As shown in Eq. (2.25), the variation of the distance between

the observer and the blade on a time axis causes a phase modulation in

z. (T) because 7 = t - D /a. Furthermore, the variation of the Machmn mn

number of the blade velocity in the direction of the observer, i.e.,

(R 2/a)sinosin(2r+ ), behaves as an amplitude modulating signal ofn m

mn (r) and ?Z (r)/3r.
mn mn

The Fourier coefficients of the modulation terms are derived in

Appendix II. The following is the final result taken from Appendix

II:

cosU2'+. )p!Rn2 sin,
R -3 R 2a

(1 + n sin- n sin(Q+))
a m a

r(Lp2+l) (2.26)

~ IpIR I sine

RIZ n )'PI

(1 + Rn sinO sin(2T+ ))2 P=-w q=-= 2a

a m _
Jq1R :s sin. q eJ(P+q)(m+)

2a ' ('pi+')7( qc + ) ,(2.27)

(i n sin sin(.-.+ m) " 2 = q - n--- sin
a a

plR 2 sin: oR Isin: - q
n____ ':_ ____qj eI [. n~ (" 2a

la? ; il -(,q Ji)

(2.28)

I J



where the approximation is made for J (z) =(1/p.)(z/2)p in Ref. (22]

Hence, the higher order terms can be neglected for small (Rn2/a)sin,;.

2.4. Acoustic Intensit.,

One can rewrite Eq. (2.25) as follows.

= B N - J(f() ,~j(t~ 4

4-Tar - n mnm fn'
m~l n~ P=--(2.29)

where

() (p) (p), 2.0e -0 sin sin-- - a cos( cos 2.0
urn n mn n mn

f(p) (p),
f =m sino,(cos,) cosS mn- sinE m )c n (2.31)

(p)1 _______jpi'R~ sinoIi 1
Cm R n 2a r(p+l) '(2.32)

-sint
a

00 W s;R 2 s in r kIR s in,,)

a a

P = + k (2.33)

and
- 1 :SIR 2 sino .1 kIRn i,

_______ E z n n InokI

n s=--= k=-~ n*2aa
- sin
a

1. p = s + k . (2.34)

Utilizing the fol1o-wing efinition of the autocorrelation func-

tion of rt)
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one obtains

B N B N

167-a-r- m=l n=l k=l 2=l p=-- q=--

ej(q-p) (: t+ ) j(q~k-P. m)+il20 ,

(2.36)

where

,a) = Eke (p )  f T) KJ
mnkZ [emn (mn Imn'

((q)'Zmn~r _ ; ( q ) ,  ra )

(e 2 l - n mn ( (2.37)

The instantaneous acoustic intensity: is given by the following

relation:

1 r

where the acoustic particle velocity u(r,;,e,t) is given by the

gradient of P(r, ,t) as follows:

u+ + - (2.39)

As r increases, u(r,,,3,t) is dominated by u which is the r-r

component of u. Thus, Ea. (2.39) becomes

r (2.40)

Hence, the acoustic intensity at a large distance r is given by
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1

I~r,,3,) = (r,~,) = T R. .(2.41)

r 2 za

Now, taking the expectation of the above intensity, one obtains

EI(r, ,~t)I= I Re'!- Y (r, ,et) P(r, , e ,t)} .) (2.42)

Since the pressure in Eq. (2.25) is real, Eq. (2.42) becomes

r 2,-a

Eq. (2.43) is equivalent to ~ r~t~/awhen )L 0 . Consider

the following pair of Fourier integrals:

= f *~~. (, ,,) e d 2.4

and

- - Sr;,, =r t~ S~ ~ da .(2.45)

Thus, from Eq. (2.36), one obtains

EilI (r, ,t 01 ~ b(r , ,d (2.46)

accordingl,,, S, (r, tj) can be regarded as an instantaneous
iF

intensity soectral densitv functicn.

Hence. by taking the a-?courier transfor- of Eq. (2.36), one

obtains the fLollowing instantaneous accustic intensity,. spectral

density function:
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B N B N

3 2 -- a r m=l n=l k=! Z=i p=_o q_

(2.47)

where

(P,q) P.0)= (jw
S mnkznk ( da (2.48)

When ,pq) (T,) is stationary, Eq. (2.-7) becomes,

1 B N B N
S r

32-'oa r m=l n=l k=l Z=l p=-- q=-_

S(P., q ) (-q.)e (q-p)(22)J (  -P )

SmnK.Z e

(2.49)

Assuming S,(r, ,t, ) is continuous and finite with respect to t, and

taking a time average of Eq. (2.49) over 21/., one obtains

B N B N
(r= t- 3 2

327-,a r m=l n=l k1- Z=I p=--=

S - p.. ) e p ( k "M) (2.50)



CHAPTER III

3LADE RESPONSE TO FLOU FLUCTUATION

3.1. Introduction

In Chapter II, the acoustic intensity spectral density function

was derived under the conditions of compactness, i.e., the virtual

source size of the rotating blades is equivalent to the physical size

of the blades, and the variation of the radiation time over the blade

is very small compared with the time scale of the surface pressure of

the blade so that the instantaneous radiations from various parts of

the blade reach the observer simultaneously. The acoustic intensity

spectral density function involves the computation of the power

spectrum of the lift on a blade. The present chapter considers the

derivation of the impulse response function of a blade based on a two-

dimensional, thin airfoil theory, and the power spectral density

function of the lift by employing the correlation function of the flow

fluctuations.

With the aid of the result by Jackson, et al. (24], the three-

dimensional interaction between olades and flow fluctuations can be

approximated by a two-dimensi nal strip theorv using Sears' function.

The lift on each strip is obtained in crier to et the impulse re-

sponse function of each strip. The two-dimensionoi strip approach

imposes the restriction that the acoustic radiation due to parallel

gusts (the spanwise vavenumber is zero) is dominant, as investigated
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by Amiet [271. Utilization of Sears' function imposes the restriction

that the mean angle of attack is so small that the effect of the flow

fluctuation parallel to the chord line of an airfoil can be neglected

as a second order effect. Hence, our concern is with the response of

a thin airfoil with zero mean angle of attack to an upwash velocity

fluctuation, where the airfoil is assumed to be lightly loaded.

Furthermore, since it is assumed that the frozen flow fluctuation

pattern is convected, there is a one-to-one correspondence between

frequency and wavenumber. In addition, the blade-to-blade interaction

is not included in the impulse response function of a blade.

3.2. Transfer Function of Blade

In general, a flow velocity fluctuation with convection velocity

U can be expressed by the following, four-dimensional, Fourier trans-

form pair:

V(,) = _ _ffX(kl, k',k 3  ek 11 dwdk dkI)dk
(27) 4  

- k 3-1d 3'
(3.1)

and

A(kl,k,k,) = f1rt1(,)eJ'(klU! i'dtdv dv dv

(3.2)

When the flow has a property such that < klU in Eq. (3.1),

Eq. (3.1) becomes

V(v,:) = [ .7 fXA(kI, I &)d.dk dk dk
32-~ 1 2 3

(3.3)
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Since_ A(k ,k2, 3,j)d; = k ,,k2, ), when = 0 Ea. (3.3)

becomes

r (k'y~ f1 Adk dk dk(2-) - K 1 3

(3..)

1where A(kAko,k :(kl,k ,k )e - Hence, k U 7>
A ~ 3'k k )=. 3 11

is equivalent to a frozen velocity fluctuation pattern, since

A(kIk 2 ,k3 ,t=0) is the wavenumber spectrum of the velocity fluctuation

at an initial time O=0. In other words, the frozen velocity fluctu-

ation pattern assumption is valid when the t-.pical time scale of the

fluctuation with no convection is much larger than that of the frozen

fluctuation with convection.

Due to the frozen fluctuation pattern assumption, the Fourier

component of the temporal variation, i.e., e j!lu, can be related to

that of a spatial variation, i.e., e k
, through k. . Thus, a one-to-

one correspondence exists between the frequency and wavenumber domain,

i.e., k1 I'U1 and kI .

In addition, the above restriction, << klUl, can be relaxed

because in the computation of the lift on a blade it needs only be

assumed that the temporal variation is negligible during the convec-

tion time for the fluctuation to pass through the blade.

Assuming linearized, small perturbation analysis of the thin

airfoil response to a frozen velocity fluctuation pattern, with a

convection velocity U1 in the yI direction, as shown in Fig. 3, the

response can be expressed by the suI of the response to each Fourier

component A(k1,k2,k), where A('-k,,k implies
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A(kl,k,,k3 , = 0). The lift on a blade with a spanwise length b and

a chordwise length c can be given by the following integration,

0 c/2 b/2 +o ((
.3( ' ) = ff f f f (k)e4 1 1k 5(y )dydk

--- c/2 -b/2 -o 3
(3.5)

where G 3 j(k,) is an aero/hydrodynamic function in tensor notation.

Neglecting the lift due to the velocity fluctuations parallel to

the blade surface, because of their second order effect, and assuming

incompressible flow so that k and A are orthogonal each other, one

obtains

c/2 b/2 +o (k.+klUl)
z J f f G3 3(k,v)A3(W)e )5(Y3 )dvdk.

-c/2 -b/2 -o
(3.6)

The integration of Eq. (3.6) over y3 yields

3 c/2 b/2

= 3(- ) G33 (k,yl,y2 )A3 (k) x
- -c/2 -b/2

e 1(klYl1k2Y2+klUl)dydy d k (3.7)

By assuming G3 3 (kl,k 2 , k3 ,y1 ,y) to be constant over the blade span,

and not considering edge effect (the tip of the airfoil), Eq. (3.7)

becomes

c/2 b/2
f f G33 (k,,)A3 (k) x

-= -c/2 -b/2 eJ(k "I+k v +k U 7)

e 1p.1 -'- 1 1' dy dy,dk .(3.8)
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Integrating the above equation over the blade span from -b/2 to +b/2,

one obtains

:r ~ ~ ~ ~jr y i)b"kl+klUl-r)

z3 (r) = JM G3 3 (klr)A 3(k)2b sinc(k 2 b)eJ 1 11l1 dyld k

(3.9)

If kb is very small so that sinc(k~b) becomes approximately 1 or,

equivalently, the typical length scale of the flow fluctuation is much

longer than the blade span length, then integrating Eq. (3.8) with

respect to k2 yields

0 c/2
£3(r) = ff f G3 3 (kl,k 3 ,yl)A 3 (kl,k 2 =0,k 3) x

- c/2

2beJ(klYl+klUl)d ydk dk (3.10)-l 1 3 (.0

Since k and A are orthogonal, and the airfoil is very thin in the y3

direction, G3(kl,k ' ) is insensitive to k Thus, integrating
331 3'!l 3

Eq. (3.10) with respect to y' one obtains

z. C3(t) = b A(k,k3)eJk1UlT dk3  (3.11)

where
c/2

H(k1) = G3 3 (k.,Y,)eJk!Yl dy,

Eq. (3.11) shows that c(k,) can be replaced with Sears' function

for a two-dimensional thin airfoil. The function is given by
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(klc (i) kl) HI) klCJ klC(

kc 2H2 0  kckc2
H(kI ) = 7rU 1C (1) (-) (k l

c  (3.12)

1 _ - jH0  ()

Its approximate form is

klc _ 2

H(kI ) 7rU c - , k1 0> , (3.13)
1 V + kC

where this approximation is done, not by taking the limitation of

Eq. (3.12) as k increases or decreases, but rather by observing that

Eq. (3.12) can be approximated to within a few percent over most of

its range. This approximation of the amplitude was done by Liepmann

[351, and approximation of phase was done by Giesing, et al. t36].

The integration with respect tok 3 in Eq. (3.11) yields the

contribution due to the upwash at Y3 = 0, so that A3 (k1 ) can be

obtained by measuring the upwash of the airfoil at y3 = 0, where

A3(k A3 (kl,k3 )e jk3Y3 dk at y3 = 0. By using the notation
3 1 3= 3 .

A3 (kl), Eq. (3.11) becomes

z3 () = 2bH(k 1 )A 3 (k1 )eJkl l . (3.14)

In the above equation, H(kI ) can be regarded as a transfer func-

jk U -tion for the response of a thin airfoil whose input is A3 (kl)e 1 1.

Furthermore, since k1U 1 can be regarded as an angular frequency, H(k

and A3(k,)e IlI can be written as H(_/U ) and A (.j/U )e'
3 L i3 1'

respectively, where = k U I . The implication of Eq. (3.14) is that

there is a one-to-one correspondence between . wavenumber and an

,,, , ,, ,, i i I I I I I I I ...
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angular frequency, that the airfoil can be treated in time and fre-

quency domains instead of space and wavenumber domains, and that

Sears' function can be regarded as the r-Fourier transform of the

impulse response function of the airfoil.

Accordingly, Eq. (3.14) yields the following convolution

integral,

13(. f h-a~ua~dab ,(3. 15)

where u(a) is the upwash measured on a time axis.

Finally, since Z3(7) is obtained by integration over the entire

airfoil or the strip of the airfoil so that the airfoil or strip can

be replaced with a dipole, the upwash on the integration area has to

be well correlated so that the dipole can represent the lift on the

integration area. As an important result, since the lift is obtained

in a time domain and in a frequency domain, Eq. (3.14) becomes insen-

sitive to the geometrical orientation and/or position of the airfoil

explicitly, although the upwash includes the geometrical information

implicitly.

3.3. Correlation Function of Lift and its Time Derivative

Adopting the model discussed in Section 3.2., one can obtain the

th -

following lift at the n strip or the n blade,

Z n(r) = f hn(r- )u (-)d . Rn , (3.!6)

mn m 7.n n

where Eq. (3.15) is utilized, and u () s the upwash at the nth
..:n



34

strip of the m th blade. Hence, the correlation function between

Smn(T) and Z kZ(T), where k and Z denote the kth blade and Zth strip,

respectively, is given by

mnkZ (T,a) = E(Zmn ()Z (T+a) (3.17)

Utilizing Eq. (3.11) in Eq. (3.17), one obtains

2.2 * uu ( ,
Zk(T a) = h(I)hk (n( --+n)dndn _2R nRmnkZ mn1kZ2 mnki 2 1 d 1  2 n 2

(3.18)

By taking the a-Fourier transform of Eq. (3.18), one obtains

Suu (T,w)AR AR (3.19)
mnkZ. ,) mn(w) ( ) mnkZ n 2

The correlation function and the spectrum of Z (r) and
mn

k (r) as well as those of 3Zmn (r)/3T and 3Z kZ (r)/T are needed to

obtain the autocorrelation function of the acoustic pressure at the

observer point. By taking the time derivative of Eq. (3.16), one

obtains

n =n ) h (r- ) u ()dn- R (3.20)
-T 3r mn ma a

Eq. (3.20) shows that the time derivative of I Cr) can be regarded as
mn

the output of the system whose impulse response function is ,h (r)/.
mn

Therefore, one obtains the following by the sane method as used in

obtaining Eq. (3.19):

.....li,
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S)= H k( )SUn (:,4).R R (3.21)
k mn n

S (Tj) = -juH ( )H (4 )Sn(t, ).R uR (3.22)mnk' in k z nnkZ n

and
z'z' = 2*

S 2 (tIpI w) H (uH ,.) (T,w.)..R 2.RZ(.3mnkZ(mn .2mnkZ( )nz , (3.23)

where Z' denotes the time derivative of the lift.



CHAPTER IV

POWER SPECTRLM OF TURBULENCE INTO ROTOR

4.1. Introduction

As shown in Chapter II and III, the power spectrum of the inflow

to a rotor is necessary in order to obtain the acoustic intensity

spectral density function of the noise radiation from the rotor. The

present chapter deals with the power spectrum density function for the

upwash at rotating blades with and without inlet struts.

For turbulent flows with no struts, two cases are to be consid-

ered: (1) the turbulence is homogeneous, isotropic, and frozen, and

(2) the turbulence in (1) is elongated on its course to the rotor

plane. The second case is pursued to obtain results for practical

situations where the eddy to a rotor is elongated, i.e., anisotropic.

For turbulent flows with struts, it is assumed that: (1) the

turbulence in the non-disturbed inflow and wakes behind the inlet

struts can be treated as in the case with no struts, (2) the wake

turbulence is statistically independent of the non-disturbed inflow

turbulence, (3) the turbulence in each wake is statistically independ-

ent of that in other wakes, (.4) the randcm variables, such as the

center position and width of each wake, are .overned by uniform dis-

tribution functions where these rndim *:ariables are statistically

independent of each other, and "5) no overlap occurs among wakes.

Furthern.ore, in the situation ",ith inlet struts, the mean flow
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velocity defect behind vanes and the stator-rotor interaction due to

potential fields, such as were investigated by Kemp, et al. [37], can

be regarded as a steady non-uniform flow. A deterministic function

is introduced in order to take this into account.

4.2. Isotrooic Turbulence with No Struts

In statistically homogeneous and stationary turbulence, the

correlation function of the turbulence velocities, u i(pt I) and

u.(P t2) where i,j = 1, 2, 3, is given by

E{ui( tl )U.(72't 2 ) 1 12 
(4.1)

where =1 - 0 2 and i t - t 2. Furthermore, by assuming frozen,

isotropic turbulence, Eq. (4.1) becomes

t .U.

,=)U N 1  (>.) . (4.2)
E~ui ( P l 9 u(02' t2 o =  II '(42

Under the above assumptions, i.e., that turbulence is homogeneous,

frozen, and isotropic, von Karman, et al. [38] derived the following

correlation function:

u- ,

12 4- ( z ij '

i,j= 1,2,3 , (4.3)

where f( ) is a longitudinal zorreiat'on :aeffi.cient function

defined by
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f(I) 1 E 'u (4.4)
U_

g(HIl) is a transverse correlation coefficient function defined by

E{Ut t}

gQI) = (4.5)

and u- is the mean square value of three components of the velocity,

Ulf u29 and u3, such that

U = u2 = u 2 = u 3  (4.6)

throughout the homogeneous and isotropic velocity field.

Furthermore, in an inccmpressible fluid medium the two corre-

lation coefficients, g(j11) and f( , have the following relation

as shown in Ref. [393:

g ( j) = f( :0) +-)1- " (4.7)

Now consider the correlation function of the upwash at rotating

blade under the following assumptions: (1) an incompressible fluid

medium, (2) frozen turbulence pattern convected with an axial flow

velocity U3, and (3) homogeneous and isotropic turbulence, see Fig. 4.

Under these assumptions, Lane r331 derived the correlation function

of the uowash at rotating blades provided that the longitudinal

correlation coefficient f(>-) is assumed to be
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f( )= exp' - a_ ,(4.3)
11

and utilizing Eq. (4.3) and Eq. (4.7).

The upwash correlation function derived by Lane [33] is as

follows:

uu (a) = u E(I2 -(a) + F(a) xp(- (4.9)2m-kZ-.A 2;D A .,.
1 1

where

E(a) C 2 (k-m) 3 + cosG.a + )sin2 , (4.10)

F(a) = (U ) 2 2 + Rn s in-3 s in-2( + 2BT(k-m),
3 o mn ksnk sn2 B '(.1

and

2 2 2U 2 2 2k -n)P2(a )  (U30r - 2'Rncs + 2 f) .(4.12)

The stagger angle 3 is approximated by a constant, 3, for all n
mn

and n. In other words, the variation of the blade twist is assumed

to be small.

Eq. (4.9) can be written in terms of non-dimensional

variables, so that

9 o1(a) F (1)=m ) 2l---- exP(- z l (ci)), (4.13)
J uu (a) = E(a) (I - 2 ~ii + 1

where

2 rU3a 2 R' 2 -R. K 2 R R_- I " " , -

:. 2- (k-m)C o s ( ._ Ot 5 ,B4 .

and
IU 3a ,2 2. n".. "  2. 2 2_ _,(k- ))

F =-
' cos 3 + in sin (..a + (4.15)

F( A.iB
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Now consider the case that R = = R for all n, n, k, and

Z. Eq. (4.13), Eq. (4.14), and Eq. (4.15) change as follows:

uulr(1) F () 1_01 - (OL)/uk(a) = u2E(u(1) + 2-----e 1 (416)

where

+= Z- +  - cos(:C + 2 (4.17)
1_A AiJ "B'

and

F =U 3a~ 2 R2-,7 k-n mlF (a) = -i cos 3 + sin sin-a + 2 (4.18)

4.3. Non-isotroDic Turbulence with No Struts

It was shown by Ribner, et al. [40], based on the continuity

and conservation of angular momentum of fluid elements, how a

contracting flow changes the incoming turbulence spectrum and its

intensity and length scales. This type of contracting stream occurs

in the flow into a stationary rotor. However, in attempting to apply

this result, the spectrum obtained in a wavenumber domain is very

difficult to convert to one in a frequency domain. This difficulty

arises because of the rotation of the blades and because the frequency

is a function of the angle between the waven=ber vector and the blade

stagger angle orientation.

Furthermore, Chandrasekhar ,4I] shcved that the general form of

the velocity correlation tensor *n an axis-.etric turbulence can be

exoressed by two arbitrary scalar functions. Hovever, the task of

obtaining the arbitrar: scalar functc-ns constizuinq the correlation

tensor is difficult due to the fact that the poer spectral density
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function of the cor:elation function must satisfy the non-negative

condition. For example, as pointed out by Kerschen, et al. [421, the

restrictive condition is not satisfied even by selecting a one-

dimensional correlation function, such as an exponential function.

Since the treatment of the isotropic turbulence has been done

kinematically and geometrically in Section 4.2., that treatment is

extended, according to Ribner, et al. ['O0, to the turbulence ingested

by a rotor. The inflow turbulence scale is assumed to be modified in

the following manner:

ij ( X 2' 3 = Li j2 (3 x l ' 2  3 (4.19)

where the superscript "in", 5, and y denotes the inflow isotropic

turbulence, the turbulence elongation rate, and the turbulence con-

traction rate, respectively. The above assumption asserts that the

statistics governing the inflow turbulence are not changed through the

flow contraction but that the shape of the domain of the statistics is

distorted. In other words, the isocorrelation contours are distorted

through the flow contraction.

The correlation function of the upwasn between two points (m,n)

and (k,Z) in a contracted flow field is given by

• (a) in (a) F1 (a) F (a)SUU i

mnkZ = (u n )>E2(a)(l -- V) - e - , (4.20)

where
('U 3 a ________

3n 1,. 2 2 2- (.k-,),
F, = cos L + ". 3in sin-( (4kB

E c() Cos3 + cos(2a + - )sin> , (4.22)
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and
Ua' 2  rR )2 (FR Z,2 R R,. rkm

2n U3a) I mn + KZ m 2-r (k-m)

02a S~i + YA - os (..a + B

(4.23)

When R R, = R for all m, n, k, and 2, the above equations become
mn i

uu in ' 2(a) F2'a) ) (a) .

(I) = (u E2 (a)(1 - 2) + e2(4.2)

where
= L J cs- + sin .asin-(2a + ),(.5

F (a) = + cos( R 2 2, 2 (425)

2 27(k-,n) 2.
E 2 (00 = Cos -- + cos(2-a + )sin (4.26)B

and

2 (U3 a2 R 2- -(k-n))
- 2 (a) = ---. , -- 1- I - Cos(.a + (4.27)

2 6iJ - \i

4.4. Power Soectrum of UDwash with Struts

The upwash to blades operating downstream of a set of struts is

assumed to be expressed by the following equation:

S-U 21 = { _ -2a _ 2 -m(
e .. 2S .tB o"w tmn~r

mnp=- q=0 wpqm m

2-o 2-a 2--n

+ - Rect . .S 25 nc u q (T)

P=-- q=) wp m 
mn

+ ! n(r-) , (4.23)
n

i uq
where u and u are the turbulent :elocities of the inflow and the

mn n
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wake, respectively, and it is assumed that: (1) no wake is overlapped

with another, (2) the function Rect(:) is given by

Rect(r) = I It: < 1

to otherwise , (4.29)

and t and w are random variables for the position and width ofqpm qpm

the Rect(-) function whose probability density functions are given by

the following:

Pr(tqpm) = F <qir [p 2 tqpm! <=-

i0 otherwise , (4.30)

and

p2 (w <% w < io
r qpm qpm

t0 otherwise , (4.31)

where , and A2 are determined so that no overlap among wakes

occurs, (3) the function uq (7) is the turbulent velocity in the wake
mn

th th t
of the q inlet strut interacting with the n segment of the mt h

rotating blade, (4) Ffu (T)}= 71- = 0 for all m, n, k, Z, and

q, (5) uq (T)'s for q = 0 ...... S-1 are statistically independent of
inn.

each other, (6) the correlaticn function of u (T) and u1 Z(7) is given

by Eq. (4.20), (7) the correlation function of u ( and uq(-) is
inn ki

given by

= A 2( (l - ) 2 (u)(q (4.32)

he2 2 2 (a)

where



45

rU3  )2 2 R Z 2 2 22 (k-)
F = cos2q + k sin 3 sin (2, + -n)

Ww (4.33)

23 2 -(k -m ) 2 ,
E2(a) = cos 3 + cos(2a + B )sin (4.34)

and
Ua)2 R 2 R ,2 R__

2 3 "2 jmn + mnkZ 2.(k-m)P2(CO = TTj + ---( -, +2 Bos<,a +w wj w 'wj  LW w wj y 2 A- B'

w W (4.35)

(8) the function M (T) is a deterministic function due to the steady
mn

circulation and mean velocity defect of the upstream strut, and

(9) the variables t and w are statistically independent for allqpm qpm

q, p, and m.

Now consider the correlation function of the upwash which is

given as

S-1
mnkZ~'r'a) = {i - " z (E Rect !}+E-Rect 21 } i kZ()

p=-- q=O

S-I S-I
+ E E Z E{Rect lIERect 2 .

pl =- == ql=O 0p2= - W= q1=0

(ni) - + E{Mmn) (4-a

qlq2

(4.36)

where 2 -p, 2-a 2-n
- - _

Rect 1 = Rec LS 3I qPln,.Rw 1 , (4.37)

and 2-P- 2-q, 2-k
Rect 2 =Rect." " -S 3i .- (3

p~q,k
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By taking the expectation of Eq. (4.36), one obtains

MS-1

k (,)--i Z Z (gn( r 2 27a 27m.
, p=-) - -=0 - -S 9

2_ 27r q. ha+ g ( T + 2 -r 2 ,lS +  1 7 ) )
z -, 'S BQ2

S-I M S-I 1 2 Tpl 2rql 21

Pl = -
m ql=0 p2 = - 

q2=0

2 rpo, 
2 Tq2  2 ii

+ + )

S-I M
+ 4 qq (a) z

q=0 pI=- P2=-

* 2-ro 1  2~ 7 a 2
n .-S B.

2 2 2-a 2k

g (7 + I 2 - 27k

+ Mn z (4.39)

where

gn ) - 0 I [ >-- £ +

n(2 ,,) -2 T- I "+2 2Li 1> A -

A21I- 22 +_ >
A--) ) 2 +21

4Q- A' -T + 32-4A A

1 2 -2 I2
! > -3 3L

(4.40)

Expanding the functions g (7) and >! ) in a Fourier series,
7.n

Eq. (4.39) becomes



7

S* ,2-.S •

p -' 2•S
e BkP)ei a

+ - -qq(p )

+ .q () D E c c
q=On P - P

,)-7+0 -CL--
e S] -q 3 2"2

+ I t b(sl) b(S2 )
n

sl S2

hj  - - )sk.sM)+ kP 2- P )-M )(P-Pl)2T+P 
".Z ; ,

(4.41)

where

S-I 2 -o 2 (P) jpS2 ,.

E E gn(t - -' a e (4.42)
n n

p=-, q=O p=-

2(- 2-7n
g 2(-gn( ) - : , (4.43)

p_-_= 
--

and

M (-) = Z b Se~ s ' r  3 ".' B-- , (4.44)

where M (7) is assumed to be a peri-diz function with a period 2/S..

mn

Now, taking the a-Fourier transform ai E. (4.41), one obtains
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uu 0j2mpS (-r w)(P) PS~rp j pS)T}IImnk. ' (1Z a ne- B )S C.)
P=m=k2n

(P) + PSTI iZa z e B mk (WS2

+ z Z a~ a~,

e B (k 2-mp1) + Sp(p 2 -Pl)7li (-pS2

+ s ~ (qS+p) P
P=-m q=-w n

ej{BL(k-m)p - mqS +~ qS2>ri ww
Smnk.

+ 0 Z (s ) ( s2
1 2

e{27(s k-s M) + (s2-s)STe 2 1 -1 5(W-S 2 S ) (4.45)

where S w)M is the a-Fourier transform of q
mnki NMI k Z a) for all q,

assmin mn'kZ(a) is the same for all q = 0,1... ,s-i.



CH.APTER V

ACOUSTIC INTENSITY SPECTRLU

DUE TO INTEraCTION OF A ROTOR WITH TURBULENCE

5.1. Introduction

In Chapter II, the acoustic radiation intensity from rotating

blades in a free space was obtained and was related to the power

spectrum of the lift of rotating blades under the condition that the

distributed pressure on each blade is compact. In Chapter III, the

impulse response function of a blade was derived so that the lift can

be obtained in a time domain and in a frequency domain. In Chapter

IV, the correlation function of the upwash to the blades and its

spectrum were derived.

In the present chapter, the results in Chapter II, III, and IV

are combined so that the acoustical intensity spectrum can be

obtained. In deriving the explicit expression for the acoustic

intensity, it is shown that the retarded time difference of the lift

among blades can be neglected. The condition necessary for this

demonstration to be valid is more relaxed than that for the dipole

domination over other radiation sources.

5.2. Retarded Time Difference

Since the results in Chapter 17 ,;ere obtained at the time

associated with the emission of :he acoustic radiation on blades,

those results cannot be substituted into the results in Chapter II
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where the correlation is taken at the obseration time when the radi-

ation reaches the observer's point. In other words, the correlation

function for the blade lift Yl q)(r,-) is obtained at two different

times t - D /a and t + a - Dk, !a.mn

Now consider under what condition the following approximation is

attainable so that the retarded time difference can be neglected

in the correlation function, in Eq. (2.36),

DI(t mn) Z rt (5.1)
mn a mn a

By Taylor series expansion, one can get the following expansion

of 9. (t - D /a),
mn mn

D~ d,
9.(t-mn = .~-r dt mn (t a)
mn a mn a dt

DR m nS i n t c o s , . (t -_ ) + m
sn+ + error terms

a

(5.2)

Hence, if it can be assumed that the typical time scale of Z (T) is

very large compared with R /a or, equivalently, that the upper cutoffmn

frequency of Z t) is much lower than a/Rn, then the approximation
mn m

in Eq. (5.1) is attained. This condition is relatively relaxed when

compared with the one for the dipole domination over other radiation

sources such as was given by Goldstein [6]:

T L (5.3)
m a(l - Mr )

rL
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where , L, and M are a characteristic time for the source fluctu-m' r

ations measured in the moving frame with a convected flow, a charac-

teristic source dimension, and a Mach number of the body speed

component in the direction of the observer, respectively. Further,

fans with low rotational speed and small radial size are more likely

to satisfy the condition for the approximation in Eq. (5.1).

Since mn(t - D mn/a) is given by the convolution integral in

Eq. (3.15), then the following equation is obtained so that the

condition required for the approximation in Eq. (5.1) is imposed on

either h (T) or u (r).

f h (T-n)un(n)dn = j h (n)u (r-n)dn . (5.4)

Thus, one can obtain the condition for the approximation to be imposed

on h (r) or u Cr); i.e., the typical time scale of h Mn(r) or u (r)

should be much larger than R sint/a or equivalently, the upper cutoff
mn

frequency of h Mn(T) and u mn(T) are derived in the same fashion as was

done in Eq. (5.2). This condition is easily obtained when the

observer is near the axis of the rotor, and is relaxed when compared

with the condition of dipole domination, (5.3).

First, consider the condition on u (r), using its typical

length scale L and its convection velocity R n , where U < R n. is.mn 3 mm

assumed. According to the condition, one obtains the following

expression:

R

in_ a (5.5)
L R sin).mn
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Thus, low rotational speed and/or small ratio of rotor radius and

turbulence length scale are required so as to obtain the approxima-

tion. As mentioned before, the condition, (5.5) is more likely to be

satisfied in water than in air. When the observer is at p = 0, the

condition is automatically satisfied, i.e., there is no retarded time

difference for the lift distribution on the blades.

Next, consider the condition on h (r). Let f be the uppermn cut

cutoff frequency of h (r), where f is defined by -3 dB = 10 log
mn cut

[H (27f cut)/H (0). Then, the condition to be imposed on h (7) ismn ct mn mm

obtained as follows,

R
n << a (5.6)

2-,c R - sin'
mn

(5.6) shows that low rotational speed and/or low aspect ratio

rotors are most likely to satisfy the condition.

Furthermore, for the time derivative of Z (7), the results formn

u (T) and h (T) are applicable based on the following equations:

mnmn "n

Zm (r) 3h ( )
= Umn (r-n)dn , (5.7)

and
)z (T) 3u()mn = h (t-) dn • (5.8)

- mn

In the present study, either one of the results (5.5) and (5.6),

or both of them may be assumed to be satisfied bv the rotor such that

the rotor is operated at low rotational speed, the flow fluctuation

length scale is lar;e compared with the rotor radius, and the cutoff

frequency satisfies (5.6). In the subsequent derivations, the
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retarded time difference is neglected in the spectrum analysis for the

rotor in a free space. It should be noted that this assumption is

imposed only on the retarded time difference associated with the lift

on a blade, while the retarded time difference associated with the

distance between the rotor and the observer is included in the present

study as was done in Chapter II.

5.3. Acoustic Intensity SDectrum from a Rotor
Operating in Free Soace

By neglecting the retarded time difference, under the assumption

discussed in Section 5.2., Eq. (2.36) becomes

(PEq)a(t - r (p)e(q).qZ'Z r
mn x a mn _eZ mnk -a

2 f .(,ZZ (t-mn "Z "mn~z a

+ j2nf(p) e (q).? r-,a)
mn kZ "mnk a

- e f (t - -,a)} (5.9)
-mn kZ >nnki a

Then, taking the a-Fourier transform of Eq. (5.9), and using Eq.

(3.19) through Eq. (3.23), one obtains

(p,q - r *~uur
S ((t H,) = ((). t -, ) _R,x
mnK a mn . mnkZ a n Y

2 :r'(c ) (p) )+e f) )
mn k mn Z mn K

(p) (q),
'mn Ng (5.10)
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Utilizing Eq. (5.10) in Eq. (2.47), and replacing t - r/a with t, one

obtains

B N B N

32-'a r ; m=l n=l k=! Z=I p=-- q=-

H 0. e (kq-mp)

Sk u (t,-qQ)e
j (q-P) (2t+2)mnkZ

(-qQ)2 e(p) e(q) + Q2 f p)f(q)
mn k.Z mn ki

- . (P) (q)+ (w-q )2e(p) (
mn kZ m }

(5.11)

Taking the time average of Eq. (5.11) over the period 27/ P, under the

assumption that S, (r, ,t,w) is continuous and finite with respect to

t, introducing the typical section idea such that H (w) = H(w) for
mn

all m and n, and replacing a blade with a dipole, one obtains

('R -

32-a 7- r p=-

r(e(P) )2 (P)) 2

1(.--) (e ) + (f T x

B B o
r - -uu

Before utilizing Eq. (-.13) in Eq. (5.12), let us consider the

non-dimensional parameters of S. ' , so that functionally the power
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spectrum Suk ( ) can be expressed as

uu u 3 "n Ksk A . ( , , : , (5.13)
1

Now, utilizing Eq. (4.13), Eq. (5.13), and Eq. (3.13) in Eq. (5.12),

and non-dimensionalizing the result, yields the following:

S_ (r, ,t, ) 1 CT 2 A.RT. 2 RQ '-5
2 (- ( -)- a ) 3 (-) <

pa2RT 2 a2

,- ,2, (p), . , (p)
( ) + (f
-) T T

c +1

(U3SB; , , , ] J (5.14)

where
(U3  R _-___ _ - B .2-,3 _e JTp(k-,) uu(U RT w-nS i e3 S ,.

1 = -- k rnki.T. ' . 'U (5.15)

a R . ;o}Z)+ 1/2

and RT3 (RT2)+U 3  is assumed.

When taking the turbulence contraction and elongation into

account, one obtains

oaN 32' : '- -' a
S~ ~ ~ ~~(? (r tw 2T2 T)2(

2,- 
C3

((w- o..)2 (,p) )2 + f(p) 2

p .... : - _( ~) (L-+'

"U R.
S -- , - , . (5.6)
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5.4. Acoustic Intensity Spectrum from Open Duct
via Free Rotor Model

This model predicts the free-space radiation and hence may be

regarded only as a source model. Because of this simplicity, the

effect of the duct is not involved in the computation. As pointed out

by Lansing [43], this model appears to overestimate greatly the

radiated noise, and to have a completely different directivity pattern

than his exact theory claims. However, this model can be used for

diagnostic purposes on fans.

Again, neglecting the retarded time difference, as was done in

Section 5.2., and utilizing Eq. (4.45) in Eq. (5.11), Eq. (5.11)

becomes as follows:

B N B N
S (r,3,, ) =  2 3 2

327-a r-p m=i n=l k=l Z=l p=-= q=--

H (w -q)H. - R e' < 3mn KZ n

{(W-q-)2e(P)e
(q ) + 2 f(p)(q)

mn kZ mn 'kZ

.nmn "kZ " mn -kZ

S* i(2)'sS i i"

aS -ksS

.(S) S ii (-sS2-q2)
a 3 SmnkW

(s,) (s,)+ a a, - x
5 =- 5 =-1n
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ew- 2-~
2 

(1-p) (W- +j-) '
mnkZ 2.

+ S Z c n
s- S =-W

e 3 12

(q) e (q) ) (2t + -T)

n,- s =- n .

L ,~ k-) (0)+s * S

32Tarml nmnkZZ~ q-
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(S (S i 2e-r(k-m)s S1 k(i s~~

(s) (s) j-~--(k-m)s I+ Z b n b 2. e B i(w-q 2-ss'j

(5.18)

where it is assumed that the terms e e (q , f f q) for

(q - p) > S are negligible, and that Sqj(r,4,t,w) is finite and

continuous with respect to t. In fact, as (R ?sinp)/a decreases the
n

above assumption becomes more accurate. (See Eq. (2.30) and Eq. (2.31).)

Now representing a blade by a dipole, and introducing the typi-

cal section idea for the impulse reseponse function of the blade, one

obtains

I B B 1

327 2 a 3r 2z m~l k=1 q=-'

ei-7(km~ 2 2..Sq)) 1

+ .(s) 2 .2S s
+ : e 35 .(w~-sS-.')

+ s (s) 2 j -(k--m) s5  (-s-)

(5. 19)
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Utilizing Eq. (5.15) in Eq. (5.19), and non-dimensionalizing the

result, one obtains

________ 1 C T 2u R TU
D ar2 , ) 2 r 2 a

a

o:. ~ ,__( - - ( ( q ) ) 2  (q))

0+ ( e , ) -+ ( fz T
q= (C T)

!, ( o0 )). r U3  RT j-o. '( - a T  -aT )S B ( a' w ' Y

+ 2. 2 (_ 3  R
+ jaA72' Y.A

+ (u ) S z Uc(S) S 3  RT

(u ) 2 T 2

S : IbTS)I
+ s4. b T 3(w-q ]-sB2)j

(u ) (sB/S)=integer 
(5.21)

When there is no strut, setting a (s)= b(s)= 0 for all s, in Eq.

(5.20) and Eq. (5.21), yields an equation equivalent to Eq. (5.14) and

Eq. (5.16), respectively.

When the observer is at 0 0, then Eq. (5.21) becomes

S.ov(r,C,t, ). . ((i 2) R2 2

2 2 r R R... 2 a coa a + -w-

Su , RT ZR
((l a ( )-, (s) 3

(S) 2- U3 % -sS2
+ a 11
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uw
+ ~ S~~1,(s) 12S(:, 'IT

(u) =- w w

+ B 2 w s

ui2 s=--
(u~ (sB/S)=integer (5.22)



CHAPTER VI

NUMERICAL RESULTS

6.1. Introduction

In Chapter V, the time averaged intensity function of the

acoustic radiation from rotating blades was derived by replacing

blades with rotating dipoles. This derivation was done under the

following turbulent inflow conditions: turbulent ingestion with no

inlet strut wakes, inflow turbulence elongation and contraction with

no inlet strut wakes, and turbulent ingestion with inlet strut wakes.

For the present derivation, a blade was assumed to be acousti-

cally compact. A rotating dipole model was pursued so that the effect

of the dipole rotation can be accounted for explicitly. Sears' func-

tion was regarded as an impulse response function of a blade, so that

the analysis was done in time and frequency domains. There was no

blade-to-blade interaction to be included, such as that developed by

Kemp, et al. [1]. Further, the dipole source was assumed to be

predominant over other radiation sources, so that the retarded time

difference among the lift of blades can be neglected. It was assumed

that the inlet struts do not affect the sound propagation and that the

distance from the rotor to the duct exit is much shorter than the

sound wavelength so that duct effects on propagation are negligible.

Finally, the turbulence was assumed to be frjzen, homogeneous, and

isotropic.
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In this chapter, computations are done for the results in

Chapter V such as Eq. (5.16) and Eq. (5.22) by changing the number of

struts and rotor blades, the spacing between struts and a rotor, the

observation angle, and non-dimensional parameters such as U 3/A i2 and

R T/A. In particular, the variation of these non-dimensional param-

eters is made around an axial flow velocity of U3 = 30 m/sec, a rotor

radius of RT = 0.30 m, a rotor rotational speed of Q = 220 rad/sec, an

inflow turbulence length scale A. - 0.15 m and 0.017 m, and a wake

turbulence length scale A = 0.0068 m.w

6.2. Numerical Results

Figs. 5, 6, and 7 show the non-dimensionalized

dependent on the non-dimensional parameters, U3 /%i2 and RT/A.. These

figures show that as U /A2 decreases, the level of the blade-passing
3'i

frequency and its multiples increases, and as R.%/Ai increases those

levels also increase. Further, as RT/A i increases, the overall level

increases.

Hence, it is clear that the kinematic relation RT/A i cannot

explain fully the spectrum profile without the dynamic relation

U3/AiQ. The effect of U /A 2 on the spectrum is the same as that
3,i 3 i~

obtained by Homicz [8]. However, the effect of RT/Ai on the spectrum

for constant U /Ai ' is the opposite of that claimed by Mani [15].
3

This is probably due to the fact that Mani did not consider the vari-

ation of U 3A 2 when he varied R.!/ i as a parameter. Further investi-

gation of this matter is necessary.

Further, as the rotational speed increases, the bandwidth and

the level at the blade-passing frequency: and its multiples are
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increased, and as the axial flow velocity increases, the blade-passing

frequency and its multiples appear clearly. The above phenomena can

be observed through the variation of U3 /.\ in Figs. 5, 6, and 7.

Fig. 8 shows that as B increases, the bandwidth of the peak at

the blade-passing frequency and its multiples increases. In this

example, as B is increased from 3 to 9, the width at the blade-passing

frequency has approximately triples. In this figure, the horizontal

axis is w/BQ. This tendency is mentioned also by Homicz [8].

Figs. 9, 10, and 11 show the observer angle dependence of the

non-dimensionalized KS (r,,t,j)>. Fig. 10 shows that the domination

of the blade-passing frequency is reduced as the observer angle

increases. The extra wiggles in Fig. 10 are due to the dipole rota-

tion. This shows that the disk model of a rotor is not sufficient

even when the rotor radius is about 0.3 and its rotational speed Mach

number is about 0.2.

In the computations in Figs. 9 through 11, the summation in

Eq. (5.16) is done for the first five terms after observing that the

computed result from the first seven terms is not different from that

using the first five terms.

Fig. 12 shows the influence of the kinematic contraction and

elongation of the inflow turbulence on the noise spectrum. The elon-

gation and contraction produce a large effect on the spectrum as

reported by Hanson [16]; although Hanson's elongation and contraction

are done by the statistics of the eddies chopped by rotating blades.

As shown in Fig. 12, the elongaticn and contraction rates, 2.0 and

0.5, respectively, create peaks at the blade-passing frequency and its

multiples even if there is no high level of peak with no contraction
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and elongation.

Figs. 13, 14, 15, and 16 show the non-dimensionalized

r(r,4,t, ) for the rotor operating in strut wakes. In this

example, there is no clear influence of the wake turbulence on the

spectrum profile. However, the effect of the mean flow deficit due to

the inlet struts is pronounced unless the number of struts and rotor

blades are chosen such that the least common multiple of B and S times

Q is in the cutoff range of Sears' function.

In Figs. 14 through 16, the wake position function Rect(t) is

assumed to be deterministic, as shown in Fig. 17. The assumed mean

flow deficit profile behind the struts is shown in Fig. 18. The wake
w[

turbulence convection velocity U is set to be U - u /2, and the
3 3 c

turbulence intensity variation according to the distance from the

trailing edge of the upstream strut is given by ((uW) 2 )1/2 /U=3

-o 0350.08(2x/c + 0.05) , where x is the coordinate along the airfoil

measured from the trailing edge, and c is the length of the airfoil,

see Ref. [44]. In the computation shown in Figs. 14 through 16, no

consideration is made of the wake turbulence length scale variation

with changes in rotor-strut spacing d. In fact, the length scales,

Ai and Aw' are too small to represent a blade with a dipole; indeed,

the dipole domination may not even be attained.
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g()

1.0

-A 01 A

where

1/2
A - 0.68c{C (x/c-0.35)1 /S4Q

D

CD= airfoil profile drag coefficient

c = airfoil chord length

x = coordinate along airfoil measured from midchord

Fig. 17. Wake Position Function Profile

U

c

-A A .T/S.2

where

u= U (4.34C 1/ )Cos3/(x/c-O.
2 ) c = airfoil chord length

3 D 1 / ')
A-0.68cC D(xlc-0.35)- -/S" C: = iirfoil nrofile drag

D coefficient

B - 2Au I(A+2i/SI.)
c x = coordinate along airfoil

7easured from midchord

Fig. 18. Mean Flow Deficit Profile



CHAPTER VII

CONCLUSIONS

The time averaged intensity density function of the acoustic

radiation from rotating blades was derived by replacing blades with

rotating dipoles. The following conclusions can be drawn from the

derivation:

1. The rectilinear model of a rotating blade row is applicable only

for the frequency range such that w>>Q; see Eq. (2.25).

2. The effect of the variation of the distance between the observer

and rotating dipoles can be neglected when R.r2sino/a -< 1; see

Eq. (2.26) through Eq. (2.28). However, care must be taken as

exhibited in Fig. 10.

3. The retarded time difference of the lift among blades and its

derivative can be neglected when the dipole source dominates over

other sources, the speed of the rotor is low, and/or the aspect

ratio is low; see Eq. (5.5) and (5.6).

4. Two n.n-dimensional parameters, U /I and RT". govern the

prorfie of the noise spectrum. As U 3' decreases, the level of3 i'"

the blade-passing frequency and its multiples increases, and as

Rr/A. increases the level also increases; see Frigs. 5, 6, and 7.

5. The non-dimensionalized time iveraze acoustic intensity densit,,

2 3
function is proportional to ((u 'a-)(R-../a) under the condi-

tion that other non-dimensional parameters are fixed; see

------------------------------
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Eq. (5.22).

6. The effect of the wake turbulence can be reduced by reducing the
w

wake width, increasing U/w '., decreasing R /I\, decreasing the3 w T w' cesnth

number of struts, and reducing the ratio, (uW )2/(u ); see

Eq. (5.22).

7. The number of struts and rotor blades should be chosen so that

the least common multiple of S and B multiplied by 2 is in the

cutoff range of the Sears' function in order to minimize the

effect of the mean flow deficit; see Eq. (5.22).

8. The acoustic intensity at the off-angle from the rotor axis is

not stationary even if the inflow turbulence is frozen and

homogeneous; see Eq. (5.11). The acoustic intensity from the

rotor with struts is not stationary even at the rotor axis; see

Eq. (5.22).

9. Increasing B, and/or increasing 2 under the condition that U 3i Q

is fixed increases the band, .th of the peak of the blade-passing

frequency and its multiples; see Feg. 8.

10. To find the effect of the rotor strut spacing on

consideration of the wake properties and mean flow deficit

profile with respect to the spacing is necessary.

11. As was derived in Eq. (5.22), S(r, ,t,u)> is exnressed by the

terms due to the inflow turbulence and wake turbulence, and the

term due to the mean flow deficit. Hence, we can deal with the

due to the infl.ow turbulence, the wake turbulence,

and mean flow deficit separately, although this separation is

hypothetical.
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APPENDIX I

Given Eq. (2.17) as follows:

SCO =B N 7 6 '(T-t+D mn/a)

4- j, Z "7Dn)AR{ aD
- m= n1a mn

5'(r-t+D /a)
_ 2mn }dT (AI.l) I

where mn

D r - R sino cos(: T + m ) , (AI.2) 4
mnf n M

and integrating Eq. (AI.l) with respect to T, one obtains

B N ARg g
(r, ,t) i D D

m=l n=l 3 mn nfl D
1 + a(l + ')D mnaa. a - mn

(AI.3)

where
3D 3D

-- £ tm n T Z -n

n

and the relation, d{5(?(:))}/d? = (d5/dT)(d/d?), is used. Consider-

ing the terms in the parenthesis of Eq. (AI.3), one obtains the

following equation:

g 3 D

D n D" 'D 2 )D T
a(I + -=) D mn a(l + 7nn) ra(l+ )a m ajT a3'T

g+ n
+ -v , (AI.5)

r
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where D is approximated by r, due to the assumption that R << r formn n

all n - 1,2,...,N and because the time history of the pressure is not

sought. Taking the r-Fourier transform of Eq. (AI.5) and taking the

ratio of the Is t and 3rd terms yields

- ar
GM~

2
r

3D
where G(M) =)(g ()} and A(w) =Y3i/(l+l -fmn)" Now, by

wn a dtr

utilizing a Taylor expansion on A, one obtains
D

1

3Dmn 3 mnD 2
( + mn-  I +

a3T aTr~~

The above equation shows that the steady state component has a

magnitude "1". Therefore, because ;D /a3T << 1 (since a low speedmn

rotor is considered here), G(w)*A(w) = G(w) for all w. Hence, the

absolute value of the ratio of the 1st and 3rd terms becomes wr/a.

If wr/a > 1, the 3rd term is negligible. The condition wr/a 1

defines the acoustic far field.

bw



APPENDIX II

Lowson [7] derived the following Fourier coefficients of the

amplitude modulation for 3rd and 4th terms in Eq. (2.25), under the

condition m 0,

R Q
cosQ2(t - D mn!a) -jpJp (p- -- sinO)

(I + --- sino sinil(t - D/a))3  --- si;n
a a

ejp(:t + -r/2) . (AII.l)

Taking the phase m' of the amplitude modulation in Eq. (2.25) into

account yields

R'2

cos{2(t - D /a) + } -jpJ n inP)

(1 + ---- sine sint2(t -D /a) + J3 = n +

a mn m a

e jp( Zt+-r/2 + m)

(AII. 2)

Now, consider the Fourier coefficient of the other amplitude

modulation in Eq. (2.25), for instance, the Fourier coefficient of

(I + (R -/a)sin sin .(t - D /a) 4. V 12. Taking the time
n mn 11 ,

derivativ:e of rl 4 (R /a)sin sin'.2(t - D /a) + m})- yields
n mn m

?R sin sin'y
d _ + (R n /a )s in sin : a-i R n siny
dt " n R32

all + ---- in¢ siny) 3

a (AII.3)

I iwo
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where the following relations are used:

d- =ddT d
dt dT dt dy (AII.4)

y 2( mn/a (AIl. 5)
and

T Itr/)+ y ninocosy (AII.6)

By comparing Eq. (AII.2) with Eq. (AII.3), one obtains the

following expansion:

(1 + n -sin,. sini{2(t -D ./a) + E J (p-l--sino)a mn Mp a

ejp(2t + -r/2 +

CAIr.7)

where the steady state component can be computed by

7 (1 + a sino siny() dt =1,(AII.8)

since dy -(I + ---s in, siny) dt.a

Therefore, one obtains

(1 + ns- sin, sinC'(t - / a) +a mnM

p=- q-M

J p-in.,)J -3 in)e m (AII.9)
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Now, consider the Fourier coefficient of sin(2(t-D /a)+4 }/+ R n Qn 1 2

(1 + -- sin sin{2(t - D /a) + m Since it can be expressed by
a ~ mn

sin{2(t-D mn/a)+ 1

1 + ---sinosin{i'(t-D /a)+- } 1 + n-insin(t-D /a)+D I
a mn m a mn m

the Fourier coefficient can be obtained through coefficients for each

term in the above.
R

Taking the time derivative of sin{-1(t-D /a)+}I +-ainmn ma

sin 2(t-D mn/a)+ m}) yields

d sin '2,cosv
dt R R :, (AIr.10)1n + )

1+ +----sinosiny (i --sinbsinyJ 3
a a

where Eq. (AII.4), Eq. (AII.5), and Eq. (AII.6) are utilized.

By comparing Eq. (AII.l0) with Eq. (AII.2), the following

expansion can be obtained:

R 2
CD Jp p - san inp)

siny a e ej p ( t + 7/2 + m )

n p=-
1 + -sinsiny -----sinea a

(6 p - 1) , (AII.11)

where che steady state component is obtained by

2 , si-Q 2-tisin., 1 { sin-dy = 0 (AII.12)
R . ~ .

0 1+ n sin~siny 0
a

Therefore, utilizing Eq. (AII.9) and Eq. (AII.12), the

following expansion is obtained:

.A



sin S2(t -DM ) + c co - 0
a m - Z 0

+RnQD )2 p==(1+ sin{Q2(t - n + .--- sn)

a a q aa m

R(ll 13)R

n n Tr



APPENDIX III

The expected value of Rect(-t +b ) is computed by the following
w

integration:

g(t) = f Rect(-+--b)p (b)p (w)dbdw , (AIII.1)-w r r

where

p (b)  b _ A,r 2A

otherwise , (AIII.2)

Pr(w) w < 2

r0 otherwise , (AIII.3)

and b and w are random variables for the position and width of

Rect(t), respectively.

Integrating with respect to b and w, one obtains

g(t) ' I t1 A -2+A

!t + 2 A+

4(2 -I -1 2 2 A2-

2I + -5 ( _ ; t! 23 -(

IsI<__A2-3

(AII1.4)

where A2 - 1 2! is assumed.
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Now, consider the special case such that pr(b) = 6(b) and Pr(W)

6(w - w ). Then, g(t) becomes

g(t) - Rect(t/w ) (AIII.5)

Eq. (AIII.5) represents the case where Rect(t) is a deterministic

function whose width and position are 2w and zero in the time axis,c
respectively.

L
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